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Abstract—FreeCell, a deterministic, perfect-information 
single-player card game, presents a significant challenge for 
computational problem-solving due to its large state space. This 
paper details the design and implementation of an automated 
solver that leverages an informed search strategy to efficiently 
discover solutions. The core of the solver is an A* algorithm, which 
is guided by a custom-designed, multi-component heuristic 
function. This heuristic is engineered to emulate proven human 
strategic priorities, such as a preference for creating ordered 
tableau sequences and clearing blocked cards, before optimizing 
for the final goal state. A key architectural feature is an integrated 
"autocomplete" mechanism that handles deterministic end-game 
move sequences, effectively reducing the search depth. This work 
specifies the object-oriented model of the FreeCell environment, 
the implementation of search and heuristic algorithms, and the 
strategic framework that enables the efficient exploration of 
complex game configurations. 
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I.  INTRODUCTION  

The game of FreeCell is a well-known variant of solitaire, 
distinguished from other variants by its nature as a game of skill 
rather than luck. Nearly every configuration, or "deal," of its 
standard 52-card deck is solvable [1]. This high degree of 
solvability and its deterministic properties establish FreeCell as 
a valuable benchmark problem for the domain of artificial 
intelligence, particularly in the field of state-space search [7]. 
The fundamental challenge of the game is not to overcome 
statistical improbability but to discover a valid, often non-
obvious, sequence of moves within a combinatorially vast state 
space. 

Consequently, the development of an effective FreeCell 
solver serves as a practical case study in complex problem-
solving and algorithmic optimization. The task mirrors real-
world challenges in logistics, automated planning, and robotics, 
where an optimal sequence of operations must be found to reach 
a goal state under a series of strict constraints [5]. The endeavor 
to create high-performance solvers pushes innovation in the core 
areas of heuristic design, search algorithm efficiency, and state-
space pruning strategies. A successful FreeCell solver, therefore, 
represents a significant achievement in applying computational 

intelligence to navigate and resolve complex, constrained 
problems. 

II. THEORY 

A. FreeCell 

 
Fig. 1. A FreeCell game in Solitaire & Casual Games (Source: Solitaire & 

Casual Games) 

FreeCell is a popular patience card game played with a single 
standard 52-card deck [1]. Unlike many solitaire variants where 
luck plays a significant role, FreeCell is almost entirely a game 
of skill, as nearly all randomly dealt games are solvable [6]. This 
characteristic makes it an excellent candidate for algorithmic 
analysis and the application of search techniques, as the 
challenge lies in discovering the correct sequence of moves 
rather than overcoming an impossible deal. 

1) Game Objective & Setup 

The primary objective of FreeCell is to move all 52 cards to 
the four Foundation piles, one for each suit, built up in 
ascending order from Ace to King (A, 2, 3, ..., K) [1]. 

The game begins with the entire 52-card deck dealt face-up 
into eight Tableau columns. The first four columns receive 
seven cards each, and the remaining four columns receive 
six cards each. There are also four designated empty spaces: 

 4 FreeCells: These are temporary storage areas, each 
capable of holding a single card [1]. 

 4 Foundations: These are the target piles where cards 
are moved by suit and rank, starting with the Ace [1]. 

2) Rules of Play 
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Movement of cards in FreeCell follows a strict set of rules: 

1. Moving Cards to FreeCells: Any single card can be 
moved from the bottom of a Tableau column to an 
empty FreeCell [6]. A card can also be moved from a 
Foundation or another FreeCell to an empty FreeCell, 
though this is rarely a useful move unless clearing a 
Foundation for other purposes. 

2. Moving Cards from FreeCells: A card from a 
FreeCell can be moved to the bottom of a Tableau 
column if it builds down in alternating colors (e.g., a 
Red 7 on a Black 8). It can also be moved to a 
Foundation if it continues the ascending sequence for 
that suit [6]. 

3. Moving Cards within Tableau Columns: Cards can 
be moved from the bottom of one Tableau column to 
the bottom of another. The card being moved must be 
one rank lower and of an opposite colour than the card 
it is placed upon (e.g., a Red 5 can be placed on a Black 
6). 

4. Moving Stacks (Cascades): Multiple cards can be 
moved together as a stack from one Tableau column to 
another, provided they are already in a valid 
descending, alternating-colour sequence (e.g., Red 7, 
Black 6, Red 5). The ability to move a stack depends 
on the number of available empty FreeCells and/or 
empty Tableau columns. The general formula for the 
maximum number of cards (𝑁) that can be moved in a 
stack is 𝑁 =  (𝐸𝐹 +  1) × 2ா், where 𝐸𝐹 is the 
number of empty FreeCells and 𝐸𝑇 is the number of 
empty Tableau columns [6]. If there are no empty 
FreeCells or Tableau columns, only a single card can 
be moved [6]. 

5. Moving Cards to Foundations: Cards can only be 
moved to the Foundations if they are the next card in 
the ascending sequence for that suit (e.g., a 4 of Hearts 
can be placed on a 3 of Hearts) [1]. Once a card is on 
a Foundation, it cannot be moved back into play, 
except temporarily to a FreeCell if necessary (which is 
generally not a productive move). 

6. Empty Tableau Columns: An empty Tableau 
column can accept any single card or any valid stack 
of cards. This is a crucial resource for reorganizing the 
Tableau. 

3) Common Human Players’ Strategies 

Human FreeCell players often employ several key 
strategies to solve games, many of which inherently involve 
heuristic-like decision-making: 

 Prioritize Exposing Aces and Twos: Getting lower-
ranked cards (especially Aces) to the Foundations as 
quickly as possible is paramount, as they unlock 
subsequent cards in their suit. 

 Create Empty FreeCells: Empty FreeCells are 
valuable resources that allow for more card 
movements and the creation of larger valid stacks. 
Players try to empty FreeCells whenever possible [6]. 

 Create Empty Tableau Columns: Empty Tableau 
columns are even more valuable than FreeCells, as 
they can temporarily hold entire stacks of cards, 
allowing for significant reorganization [6]. 

 Build Down in Tableau, Build Up in Foundations: 
The primary goal is to build up the Foundations, while 
simultaneously trying to build down the Tableau 
columns in alternating colors to expose buried cards 
and create opportunities for movement. 

 Look Ahead: Players often plan several moves in 
advance, considering the implications of each card 
movement on future possibilities and the availability 
of FreeCells. 

 Unblocking Cards: A common challenge is a key 
card being "blocked" by other cards on top of it in a 
Tableau column. Strategies involve moving the 
blocking cards to FreeCells, other Tableau columns, or 
Foundations to free up the desired card. 

B. A* Search 

The A* (pronounced A-star) search algorithm is a prominent 
and widely utilized informed search algorithm renowned for its 
completeness, optimality, and computational efficiency in 
finding the least-cost path between a start node and a goal node 
in a graph [4, 5]. It distinguishes itself from uninformed search 
strategies by incorporating heuristic information to intelligently 
guide its exploration, thereby significantly reducing the search 
space compared to algorithms like Breadth-First Search (BFS) 
or Dijkstra's algorithm in many problem domains [3]. 

1) Formal Definition 

A* operates on a state space graph G = (V, E), where 
𝑉 is a set of nodes (states) and 𝐸 is a set of edges (transitions 
or actions) connecting these nodes. Each edge (u, v) ∈ E  is 
associated with a positive cost 𝑐(𝑢, 𝑣)  >  0. The objective 
is to find a path from a designated start node s ∈ V  to a goal 
node g ∈ V  (or any node within a set of goal nodes 𝐺𝑇 ⊆
𝑉) such that the total cost of the path is minimized [4]. 

A* evaluates each node n ∈ V  using an evaluation function 
𝑓(𝑛), defined as: 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) 

where: 

 𝑔(𝑛) represents the actual cost of the cheapest path 
found so far from the start node 𝑠 to node 𝑛 [3, 4]. 
When a node n is initially discovered, 𝑔(𝑛) is the cost 
of the path from s through the parent node that led to 
n. As the algorithm progresses, 𝑔(𝑛) may be updated 
if a cheaper path to n is discovered. 

 ℎ(𝑛) is a heuristic function that estimates the cost of 
the cheapest path from node n to the goal node g [3, 
4]. This heuristic is crucial for guiding the search. 
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The A* algorithm maintains two sets of nodes: 

a) Open List (Frontier): A priority queue containing 
nodes that have been discovered but not yet fully 
expanded [5]. Nodes in the Open List are prioritized 
based on their 𝑓(𝑛) value, with the node having the 
lowest 𝑓(𝑛) being selected for expansion next. 

b) Closed List (Visited): A set containing nodes that have 
already been expanded [5]. Nodes in the Closed List 
are not re-expanded to prevent cycles and redundant 
computations. 

The algorithm proceeds iteratively: 

a) Initialize the Open List with the start node s, setting its 
𝑔(𝑠) = 0 and 𝑓(𝑠) = ℎ(𝑠). The Closed List is initially 
empty [3]. 

b) While the Open List is not empty:  

a. Extract the node n with the lowest 𝑓(𝑛) value 
from the Open List. 

b. If n is the goal node, reconstruct the path from 
s to n by backtracking through parent pointers 
and terminate. This path is guaranteed to be 
optimal under specific conditions. 

c. Add n to the Closed List. 
d. For each successor n′ of n:  

i. If n′ is in the Closed List, skip it. 
ii. Calculate the tentative cost 𝑔𝑡𝑒𝑚𝑝

(𝑛′) = 𝑔(𝑛) + 𝑐(𝑛, 𝑛′). 
iii. If n′ is not in the Open List or 𝑔𝑡𝑒𝑚𝑝

(𝑛′) < 𝑔(𝑛′) (indicating a cheaper path 
to n′ has been found): 

a. Set n's parent to n. 
b. Update 𝑔(𝑛′) = 𝑔𝑡𝑒𝑚𝑝(𝑛′). 
c. Update 𝑓(𝑛′) = 𝑔(𝑛′) + ℎ(𝑛′). 
d. If n′ is not in the Open List, add 

it. 
Otherwise, update its priority in the 
Open List. 

III. SOLVER IMPLEMENTATION 

This chapter provides a detailed exposition of the solver's 
software implementation, bridging the gap between the 
theoretical concepts of FreeCell and search algorithms, and their 
concrete realization in the Java programming language. The 
discussion is segmented into three distinct, yet interconnected, 
parts to offer a comprehensive overview of the system's design. 

First, we will dissect the heuristic function, which represents 
the core intelligence of the solver. This section will explain how 
abstract human problem-solving strategies and intuition for 
FreeCell are systematically mapped into a quantitative 
evaluation function designed to guide the search process 
effectively. 

Second, we will describe the software architecture of the 
FreeCell game environment itself. This includes an overview of 
the object-oriented design, the data structures chosen to model 
the dynamic game state, and the modular encapsulation of the 
game's complex rules. 

Finally, we will examine the concrete implementation of the 
A* search algorithm. This analysis covers the primary data 
structures used for state management, the process for generating 
valid successor states, and the integration of custom 
optimizations, such as the performAutocompleteMoves function, 
which enhances search efficiency by handling deterministic 
move sequences automatically. 

A. Solving Intuition via Heuristics 

The efficacy of the solver is primarily attributable to its 
heuristic evaluation function, h(n), which provides the 
necessary guidance for the search algorithm. The heuristic is 
engineered to quantify the strategic value of any given game 
state, with lower scores indicating more promising 
configurations. Its design is based on a hierarchical, multi-stage 
strategy that mirrors expert human play: prioritize the 
establishment of board structure before focusing on end-game 
objectives. This strategy can be summarized as: 1) create 
ordered sequences in the tableau, 2) unblock critical cards, and 
3) move cards to the home cells. 

This strategic intuition is mathematically modeled in the 
Heuristic.java file, where the heuristic value is a weighted sum 
of five distinct components: 

private static final int 
REWARD_PER_CARD_IN_HOME = -25; 
 
private static final int 
REWARD_PER_SEQUENCE_CARD = -10; 
 
private static final int 
REWARD_PER_EMPTY_TABLEAU = -5; 
 
private static final int 
PENALTY_PER_USED_FREECELL = 2; 
 
private static final int 
PENALTY_PER_BLOCKED_CARD = 1; 

 
1. Sequence Reward (-10) 

This value directly encodes the primary strategy of 
creating ordered stacks. The function 
calculateSequenceScore identifies all cards within 
valid, descending, color-alternating sequences and 
applies a significant reward for each. This provides a 
strong incentive for the algorithm to make moves that 
improve the organization of the tableau. 
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Fig. 2. The sequence reward calculation implementation (Source: 
Author’s code in the IDE) 

2. Empty Tableau Reward (-5) 

The creation of empty columns is a critical enabling 
strategy, as they provide essential space for 
reorganizing the tableau. This component rewards 
states with empty tableau piles, encouraging the solver 
to create this valuable resource. 

3. Blocked Card Penalty (1) 

This component addresses the secondary goal of 
unblocking cards. It applies penalties for cards that are 
obstructing other cards that are next in sequence to be 
moved to a home cell (e.g., an Ace). This guides the 
solver to clear these obstacles. 

 
Fig. 3. The blocked card calculation implementation (Source: 
Author’s code in the IDE) 

4. Home Card Reward (-25) 

This represents the final objective and provides the 
largest single reward. By heavily weighing each card 
successfully placed in a home cell, the heuristic ensures 
the solver never loses sight of the ultimate goal. 

5. Free Cell Penalty (2) 

This models the strategic cost of using the four free 
cells, which are a finite and critical resource. A small 
penalty for each occupied free cell encourages the 
solver to keep them open when possible. 

 By synthesizing these rewards and penalties, the heuristic 
provides a nuanced evaluation that effectively guides the search 
algorithm toward strategically advantageous states. 

B. FreeCell Software Architecture in Java 

The solver is built upon a modular, object-oriented design 
that ensures a clean separation of concerns between the game's 
state representation, its rules, and the search algorithm. 

 State Representation  

public class GameState { 

     
  private List<Stack<Card>> 
tableauPiles; 

  private List<Card> freeCells; 
  private List<Stack<Card>> homeCells; 

The GameState class serves as the central data 
structure, providing a complete and self-contained 
representation of the game board. The eight Tableau 
piles and four Home Cell foundations are modeled as 
a List<Stack<Card>>, which is an ideal structure for 
the last-in, first-out operations of these piles. The four 
FreeCells are modeled as a List<Card>. A crucial 
method within this class is deepCopy(), which enables 
the search algorithm to explore successor states 
without mutating the state of the parent node from 
which they were generated. The Card class itself is a 
simple data object containing suit and rank attributes. 

public class Card { 

    private String suit; 

    private String rank; 

 

 
Fig. 4. The deepCopy() method intended for deep copy of game states 
(Source: Author’s code in the IDE) 

 Game Logic 

All rules governing legal play are centralized within 
the Rules class. This class is implemented as a 
collection of public static utility methods (e.g., 
canMoveTableauToTableau, getMaxMovableCards). 
Each method acts as a predicate function, accepting a 
GameState and other relevant parameters to return a 
boolean value indicating the validity of a potential 
move. This design decouples the fundamental rules of 
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FreeCell from the search strategy, allowing either 
component to be modified independently. 

 
Fig. 5. The validator method canMoveTableauToFreeCell (Source: 
Author’s code in the IDE) 

 
Fig. 6. A snip of the canMoveTableauToTableau method (Source: 
Author’s code in the IDE) 

C. Search Algorithm Implementation 

As per the theory that is stated in Chapter 2, the solver 
employs the A* search algorithm to find a solution path from an 
initial state to a goal state. The implementation is contained 
within the AStar.java class and is tailored to the specifics of the 
FreeCell game. 

 Core Algorithm 

The implementation adheres to the standard A* 
procedure, which seeks to find the path with the lowest 
f-score. The f-score, or evaluation function 𝑓(𝑛), is the 
sum of two components: 𝑔(𝑛), the actual cost of the 
path from the start node to the current node 𝑛, and 
ℎ(𝑛), the heuristic's estimated cost from node 𝑛 to the 
goal. This is defined in the Node.java class's getFScore 
method. The priority queue (open list) in the solver is 
configured to prioritize nodes with the lowest 𝑓(𝑛) 
value, ensuring the algorithm always expands to the 
most promising node on the frontier. 

public class Node { 

    private Node parent; 

    private int depth; 

    private int pathCost; 

    private GameState state; 

    private SolutionStep step;  

    public int getFScore(Heuristic 
heuristic) { 

        return this.pathCost + 
heuristic.calculate(this.state); 

    } 

 

 State Management 

To manage the search, the algorithm maintains two 
primary data structures: an openList (a priority queue) 
for discovered but unexpanded nodes, and a closedList 
(a HashSet) for nodes that have already been expanded. 
This standard approach prevents the algorithm from 
getting caught in cycles and avoids redundant 
computations by ensuring no state is processed more 
than once. 

 
Fig. 7. Snip of the openList, closedList, openStates attributes on the 
solve function (Source: Author’s code in the IDE) 

 
Fig. 8. Snip of the openList queue mechanism (Source: Author’s code 
in the IDE) 

 
Fig. 9. Snip of the closedList addition mechanism (Source: Author’s 
code in the IDE) 

 Successor Generation with Autocomplete 

The main loop of the algorithm extracts the node with 
the lowest f-score from the openList. It then generates 
all valid successor states by calling the 
getHomeCellMoves and getOtherMoves methods. A 
key feature of this implementation is the 
performAutocompleteMoves function. This function is 
invoked after each primary move is simulated. It serves 
as a macro-operator, executing a cascade of all 
subsequent "safe" and obvious moves to the home 
cells. By bundling a primary strategic move with its 
immediate deterministic consequences, this feature 
allows the search to take larger, more meaningful steps, 
which can help to reduce the effective depth of the 
search space. 

 
Fig. 10. Extracting the node with the lowest f-score (Source: Author’s 
code in the IDE) 
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Fig. 11. Code snippet of the getHomeCellMoves method (Source: 
Author’s code in the IDE) 

 
Fig. 12. Code snippet of the performAutoCompleteMoves method 
(Source: Author’s code in the IDE) 

 Admissibility Analysis 

For the A* algorithm to be optimal (that is, guaranteed 
to find the shortest possible solution path), its heuristic 
function ℎ(𝑛) must be admissible, meaning it never 
overestimates the true cost (number of moves) required 
to reach the goal. The custom heuristic implemented in 
Heuristic.java is non-admissible by design. It does not 
attempt to estimate the number of moves remaining. 
Instead, it generates a strategic score based on a 
weighted combination of rewards (for cards in home, 
sequences, empty tableaus) and penalties (for blocked 
cards, used free cells). Because this score can decrease 
by a large amount (e.g., -25 for one card going home) 
for a single move, it does not satisfy the admissibility 
condition (ℎ(𝑛)  ≤  𝑡𝑟𝑢𝑒_𝑐𝑜𝑠𝑡(𝑛)). Consequently, 
while the algorithm efficiently finds a solution by 
following strong strategic guidance, it is not guaranteed 
to find the solution with the absolute fewest number of 
moves. 

 

Fig 13. The output of visited nodes to show performance based on F-
score (Source: Authors’ output in the IDE terminal) 

IV. TEST CASES & RESULTS 

An empirical evaluation was conducted to validate the 
performance and efficacy of the solver program described in the 
preceding sections. A fundamental criterion for the solver's 
validity is its ability to find solutions for a diverse range of 
standard FreeCell puzzle configurations. To this end, a 
comprehensive suite of benchmark tests was designed to assess 
the implementation across a spectrum of complexities. These 
tests include game configurations from distinct difficulty 
categories, ranging from easy and medium to hard and very hard. 

Furthermore, to test the algorithm's ability to correctly 
handle unsolvable states, a known impossible game 
configuration was included in the test suite. The subsequent 
sections of this chapter will present and analyze the empirical 
results and performance metrics obtained from these 
evaluations. 

A. Solver Testing 

The test cases are based on real-life Microsoft FreeCell game 
data, sourced from the benchmark collection at 
freecellgamesolutions.com [1]. The following sections present 
and analyze the performance metrics obtained from these 
evaluations. 

1) Easy Games 
For this paper, "Easy" games are defined as 

configurations that are solvable without utilizing any free 
cells. The selected test suite includes hundreds of such 
games. For this analysis, two specific cases were chosen to 
test distinct aspects of the solver's performance. 

a) Game 25904 
This configuration is widely regarded as one of the 
most computationally simple games. It serves as a 
baseline test for the solver's ability to find a solution 
quickly when the path is straightforward. 

 
Fig. 14. Configuration for game 25904 (Source: 
https://freecellgamesolutions.com/fcs/?game=25904&fc=0 ) 

When this game was provided as input, the program 
successfully found a solution. As a representative 
example of the solver's detailed output format, the 
complete solution path is presented in Image x. The 
primary performance metrics for this test are 
summarized below: 
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Fig. 15. Solution output (start & finish) from game 25904 (Source: 
Authors’ output in the IDE terminal) 

 
Fig. 16. Performance metrics for game 25904 (Source: Authors’ 
output in the IDE terminal) 

b) Game 10913 

 
Fig. 17. Configuration for game 10913 (Source: 
https://freecellgamesolutions.com/fcs/?game=10913) 

This game was selected for its distinction as having 
one of the shortest known solution paths, requiring 
only 18 moves. This test case evaluates the solver's 
ability to find a highly efficient and non-obvious 
solution. The solver successfully identified a path, 
with the performance metrics summarized below: 

 
Fig. 18. Performance metrics for game 10913 (Source: Authors’ 
output in the IDE terminal) 

2) Medium Level Games 
This category serves as a bridge between simple and 

complex puzzles. It includes games that, while not 
exceptionally difficult, require the use of free cells and more 
sophisticated strategic planning. 

a) Game 34898 

 
Fig. 19. Configuration for game 34898 (Source: 
https://freecellgamesolutions.com/fcs/?game=34898 ) 

This game is classified by the benchmark source as the 
most difficult configuration within the "easy" (zero-
free-cell) category, making it an excellent test of the 
heuristic's ability to navigate a more complex search 
space without needing free cells. The solver's 
performance metrics are as follows: 

 
Fig. 20. Performance metrics for game 34898 (Source: Authors’ 
output in the IDE terminal) 

b) Game 23748 
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Fig. 21. Configuration for game 23748 (Source: 
https://freecellgamesolutions.com/fcs/?game=23748) 

This game was selected as a representative case of an 
average-difficulty puzzle that necessitates the use of 
free cells for its solution. The results from this test are 
presented below: 

 

 
Fig. 22. Performance metrics for game 23478 (Source: Authors’ 
output in the IDE terminal) 

3) Hard Games 
Following the benchmark's definition, "Hard" games are 

those that can only be solved by utilizing all four free cells. 
These configurations typically involve much longer 
solution paths and require the algorithm to navigate 
significant local optima. 

a) Game 1025 

 
Fig. 23. Configuration for game 1025 (Source: 
https://freecellgamesolutions.com/fcs/?game=1025) 

This game was chosen as a typical example of a hard 
puzzle, requiring complex maneuvering and full use of 
available resources. The solver's results are below: 

 
Fig. 24. Performance metrics for game 1025 (Source: Authors’ output 
in the IDE terminal) 

b) Game 5087 

 
Fig. 25. Configuration for game 5087 (Source: 
https://freecellgamesolutions.com/fcs/?game=5087) 

This configuration is considered one of the most 
challenging FreeCell games, with a known minimal 
solution path of at least 50 moves. It serves as a stress 
test for the solver's heuristic guidance and search depth 
capabilities. The performance summary is as follows: 

 
Fig. 26. Performance metrics for game 5087 (Source: Authors’ output 
in the IDE terminal) 

4) Impossible Game 

 
Fig. 27. Configuration for game 11982 (Source: 
https://freecellgamesolutions.com/fcs/?game=11982) 
 
To validate the solver's behavior on unsolvable problems, a 
configuration proven to be impossible was used as input [1, 
6]. A robust solver should not loop indefinitely but should 
terminate correctly. The summary of the test result is 
displayed below: 
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Fig. 28. Preview of node exploration during the impossible game test 
(Source: Authors’ output in the IDE terminal) 

 
Fig. 29. Performance metrics for game 11982 (Source: Authors’ output in 
the IDE terminal) 

The complete test results can be found in the /result folder on 
the GitHub repository cited in the chapters below. 

B. Result and Performance Analysis 

The primary performance metrics recorded for each test 
were: the total runtime to find a solution, the number of search 
nodes expanded (a measure of computational effort), and the 
length of the discovered solution path. 

1) Performance Summary 
The average performance of the solver across the primary 
difficulty categories is summarized in Table 1 below. The 
data demonstrates a clear correlation between the prescribed 
difficulty of a game and the computational resources 
required to find a solution. 

Difficulty 
Level 

Average 
Runtime 
(ms) 

Average 
Nodes 
Expanded 

Average 
Path Length 

Easy ~133 ~74 ~29.5 
Medium ~1,659 ~4,133 ~59 
Hard ~2,343 ~9,465 ~61 

Table 1. Average results for the tests grouped by board difficulty, using (n 
= 5) sample size for each difficulty group. 

2) Analysis of Results 
The aggregated data reveals distinct performance 
characteristics for each difficulty level, highlighting how 
the complexity of the game state impacts the search process. 
 

a) Easy Games 
This category, defined by puzzles solvable with zero free 
cells, presented the least computational challenge. As 
indicated by the low average runtime and node count, the 
solver was able to identify a solution path relatively 
directly. In these configurations, the heuristic function 
effectively guides the search along a near-optimal path 

with minimal deviation into unproductive branches of the 
search tree. The search is characterized by a consistent 
and rapid improvement in the heuristic score from one 
state to the next. 

b) Medium Games 
This category represents a significant increase in 
complexity. The requirement of using free cells 
introduces more intricate dependencies between moves 
and creates a more challenging search space. The data 
reflects this, showing a substantial rise in both the 
number of nodes expanded and the total solution time. 
For these games, the solver more frequently encounters 
local optima, where it must explore numerous states with 
similar heuristic values before discovering a 
"breakthrough" move that unlocks further progress. 

c) Hard Games 
The "Hard" category, requiring the use of all four free 
cells, proved to be the most computationally intensive. 
The performance metrics show an exponential increase 
in search effort compared to the medium level. These 
puzzles are characterized by long, non-obvious move 
sequences and numerous strategic dead-ends. The 
heuristic, while still effective, must guide the search 
through vast plateaus in the state space where a clear path 
forward is not immediately apparent. The solver's ability 
to solve these games, albeit with longer runtimes, 
demonstrates the robustness of the implementation, while 
the high node count underscores the sheer combinatorial 
complexity of these advanced puzzles. 

d) Validation on the Impossible Game 
Finally, to test the algorithm's completeness and 
termination behaviour, a known impossible game 
configuration was used as input. The solver correctly 
concluded that no solution was available by reaching its 
predefined search limits (maxNodes and 
max_search_depth in AStar.java). This is the desired 
outcome, as it confirms the solver will not loop 
indefinitely on an unsolvable problem and correctly 
terminates its search. 

V. CONCLUSION 

This research has successfully demonstrated the application 
of an informed search algorithm to the computationally 
challenging, high-complexity state-space of the game FreeCell. 
The developed solver, based on the A* search framework, 
proves capable of finding solutions for a wide range of game 
configurations, validating the overall architectural design. The 
primary contribution of this work is the development and 
validation of a custom, multi-component heuristic function that 
effectively guides the search process by quantitatively modeling 
expert human strategic priorities. 

The central role of the heuristic was paramount to the 
project's success. It was determined that naive or simplistic 
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evaluation functions were insufficient for navigating the 
complexities of the game. The final heuristic represents a form 
of knowledge engineering, codifying the domain-specific 
strategy of prioritizing intermediate structural goals—namely, 
the formation of ordered tableau sequences—before pursuing 
terminal objectives. This strategic encoding allows the solver to 
identify and favor board states that are not just numerically 
closer to the goal but are positionally and structurally more 
advantageous, a critical distinction that earlier heuristic 
iterations failed to capture. 

The performance of the solver must be understood within its 
theoretical context. While uninformed search methods such as 
Breadth-First Search are complete, they are computationally 
infeasible for a problem with a combinatorial state space as large 
as FreeCell's. Conversely, a standard A* search with a simple, 
admissible heuristic (e.g., counting cards not in their home 
positions) would, in theory, guarantee an optimal solution. 
However, its practical performance would be poor due to the 
heuristic's weak pruning power, leading to an exhaustive and 
inefficient exploration of the search space. 

The implemented algorithm occupies a pragmatic middle 
ground, deliberately trading guaranteed optimality for 
computational efficiency. By employing a powerful, non-
admissible heuristic, the solver performs an aggressive pruning 
of the search tree, allowing it to find solutions to otherwise 
intractable problems within practical time and memory 
constraints. The non-admissibility of the heuristic means the 
discovered path is not guaranteed to be the shortest, but its 
guidance ensures that the search remains focused on 
strategically viable paths. This work, therefore, confirms that for 
many complex problem domains, the most effective approach is 
not the one with the strongest theoretical guarantees of 
optimality, but the one guided by a well-engineered, domain-
specific heuristic that makes the problem tractable in practice. 
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VII. APPENDIX 

The complete source code, test results, and main program used 
for the completion of this paper can be accessed in the GitHub 
page here. Outside of that, the video describing this paper can 
be accessed here. 
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