
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

FreeCell Solver with Best-First Search via Custom
Heuristics

Leveraging Informed Search for Efficient and Complete Game State Exploration

Haegen Quinston - 13523109
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 13523109@std.stei.itb.ac.id haegenquinston@gmail.com

Abstract—FreeCell, a deterministic, perfect-information
single-player card game, presents a significant challenge for
computational problem-solving due to its large state space. This
paper details the design and implementation of an automated
solver that leverages an informed search strategy to efficiently
discover solutions. The core of the solver is an A* algorithm, which
is guided by a custom-designed, multi-component heuristic
function. This heuristic is engineered to emulate proven human
strategic priorities, such as a preference for creating ordered
tableau sequences and clearing blocked cards, before optimizing
for the final goal state. A key architectural feature is an integrated
"autocomplete" mechanism that handles deterministic end-game
move sequences, effectively reducing the search depth. This work
specifies the object-oriented model of the FreeCell environment,
the implementation of search and heuristic algorithms, and the
strategic framework that enables the efficient exploration of
complex game configurations.

Keywords—solver, strategy, heuristics, deterministic

I. INTRODUCTION

The game of FreeCell is a well-known variant of solitaire,
distinguished from other variants by its nature as a game of skill
rather than luck. Nearly every configuration, or "deal," of its
standard 52-card deck is solvable [1]. This high degree of
solvability and its deterministic properties establish FreeCell as
a valuable benchmark problem for the domain of artificial
intelligence, particularly in the field of state-space search [7].
The fundamental challenge of the game is not to overcome
statistical improbability but to discover a valid, often non-
obvious, sequence of moves within a combinatorially vast state
space.

Consequently, the development of an effective FreeCell
solver serves as a practical case study in complex problem-
solving and algorithmic optimization. The task mirrors real-
world challenges in logistics, automated planning, and robotics,
where an optimal sequence of operations must be found to reach
a goal state under a series of strict constraints [5]. The endeavor
to create high-performance solvers pushes innovation in the core
areas of heuristic design, search algorithm efficiency, and state-
space pruning strategies. A successful FreeCell solver, therefore,
represents a significant achievement in applying computational

intelligence to navigate and resolve complex, constrained
problems.

II. THEORY

A. FreeCell

Fig. 1. A FreeCell game in Solitaire & Casual Games (Source: Solitaire &

Casual Games)

FreeCell is a popular patience card game played with a single
standard 52-card deck [1]. Unlike many solitaire variants where
luck plays a significant role, FreeCell is almost entirely a game
of skill, as nearly all randomly dealt games are solvable [6]. This
characteristic makes it an excellent candidate for algorithmic
analysis and the application of search techniques, as the
challenge lies in discovering the correct sequence of moves
rather than overcoming an impossible deal.

1) Game Objective & Setup

The primary objective of FreeCell is to move all 52 cards to
the four Foundation piles, one for each suit, built up in
ascending order from Ace to King (A, 2, 3, ..., K) [1].

The game begins with the entire 52-card deck dealt face-up
into eight Tableau columns. The first four columns receive
seven cards each, and the remaining four columns receive
six cards each. There are also four designated empty spaces:

 4 FreeCells: These are temporary storage areas, each
capable of holding a single card [1].

 4 Foundations: These are the target piles where cards
are moved by suit and rank, starting with the Ace [1].

2) Rules of Play

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Movement of cards in FreeCell follows a strict set of rules:

1. Moving Cards to FreeCells: Any single card can be
moved from the bottom of a Tableau column to an
empty FreeCell [6]. A card can also be moved from a
Foundation or another FreeCell to an empty FreeCell,
though this is rarely a useful move unless clearing a
Foundation for other purposes.

2. Moving Cards from FreeCells: A card from a
FreeCell can be moved to the bottom of a Tableau
column if it builds down in alternating colors (e.g., a
Red 7 on a Black 8). It can also be moved to a
Foundation if it continues the ascending sequence for
that suit [6].

3. Moving Cards within Tableau Columns: Cards can
be moved from the bottom of one Tableau column to
the bottom of another. The card being moved must be
one rank lower and of an opposite colour than the card
it is placed upon (e.g., a Red 5 can be placed on a Black
6).

4. Moving Stacks (Cascades): Multiple cards can be
moved together as a stack from one Tableau column to
another, provided they are already in a valid
descending, alternating-colour sequence (e.g., Red 7,
Black 6, Red 5). The ability to move a stack depends
on the number of available empty FreeCells and/or
empty Tableau columns. The general formula for the
maximum number of cards (𝑁) that can be moved in a
stack is 𝑁 = (𝐸𝐹 + 1) × 2ா், where 𝐸𝐹 is the
number of empty FreeCells and 𝐸𝑇 is the number of
empty Tableau columns [6]. If there are no empty
FreeCells or Tableau columns, only a single card can
be moved [6].

5. Moving Cards to Foundations: Cards can only be
moved to the Foundations if they are the next card in
the ascending sequence for that suit (e.g., a 4 of Hearts
can be placed on a 3 of Hearts) [1]. Once a card is on
a Foundation, it cannot be moved back into play,
except temporarily to a FreeCell if necessary (which is
generally not a productive move).

6. Empty Tableau Columns: An empty Tableau
column can accept any single card or any valid stack
of cards. This is a crucial resource for reorganizing the
Tableau.

3) Common Human Players’ Strategies

Human FreeCell players often employ several key
strategies to solve games, many of which inherently involve
heuristic-like decision-making:

 Prioritize Exposing Aces and Twos: Getting lower-
ranked cards (especially Aces) to the Foundations as
quickly as possible is paramount, as they unlock
subsequent cards in their suit.

 Create Empty FreeCells: Empty FreeCells are
valuable resources that allow for more card
movements and the creation of larger valid stacks.
Players try to empty FreeCells whenever possible [6].

 Create Empty Tableau Columns: Empty Tableau
columns are even more valuable than FreeCells, as
they can temporarily hold entire stacks of cards,
allowing for significant reorganization [6].

 Build Down in Tableau, Build Up in Foundations:
The primary goal is to build up the Foundations, while
simultaneously trying to build down the Tableau
columns in alternating colors to expose buried cards
and create opportunities for movement.

 Look Ahead: Players often plan several moves in
advance, considering the implications of each card
movement on future possibilities and the availability
of FreeCells.

 Unblocking Cards: A common challenge is a key
card being "blocked" by other cards on top of it in a
Tableau column. Strategies involve moving the
blocking cards to FreeCells, other Tableau columns, or
Foundations to free up the desired card.

B. A* Search

The A* (pronounced A-star) search algorithm is a prominent
and widely utilized informed search algorithm renowned for its
completeness, optimality, and computational efficiency in
finding the least-cost path between a start node and a goal node
in a graph [4, 5]. It distinguishes itself from uninformed search
strategies by incorporating heuristic information to intelligently
guide its exploration, thereby significantly reducing the search
space compared to algorithms like Breadth-First Search (BFS)
or Dijkstra's algorithm in many problem domains [3].

1) Formal Definition

A* operates on a state space graph G = (V, E), where
𝑉 is a set of nodes (states) and 𝐸 is a set of edges (transitions
or actions) connecting these nodes. Each edge (u, v) ∈ E is
associated with a positive cost 𝑐(𝑢, 𝑣) > 0. The objective
is to find a path from a designated start node s ∈ V to a goal
node g ∈ V (or any node within a set of goal nodes 𝐺𝑇 ⊆
𝑉) such that the total cost of the path is minimized [4].

A* evaluates each node n ∈ V using an evaluation function
𝑓(𝑛), defined as:

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

where:

 𝑔(𝑛) represents the actual cost of the cheapest path
found so far from the start node 𝑠 to node 𝑛 [3, 4].
When a node n is initially discovered, 𝑔(𝑛) is the cost
of the path from s through the parent node that led to
n. As the algorithm progresses, 𝑔(𝑛) may be updated
if a cheaper path to n is discovered.

 ℎ(𝑛) is a heuristic function that estimates the cost of
the cheapest path from node n to the goal node g [3,
4]. This heuristic is crucial for guiding the search.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The A* algorithm maintains two sets of nodes:

a) Open List (Frontier): A priority queue containing
nodes that have been discovered but not yet fully
expanded [5]. Nodes in the Open List are prioritized
based on their 𝑓(𝑛) value, with the node having the
lowest 𝑓(𝑛) being selected for expansion next.

b) Closed List (Visited): A set containing nodes that have
already been expanded [5]. Nodes in the Closed List
are not re-expanded to prevent cycles and redundant
computations.

The algorithm proceeds iteratively:

a) Initialize the Open List with the start node s, setting its
𝑔(𝑠) = 0 and 𝑓(𝑠) = ℎ(𝑠). The Closed List is initially
empty [3].

b) While the Open List is not empty:

a. Extract the node n with the lowest 𝑓(𝑛) value
from the Open List.

b. If n is the goal node, reconstruct the path from
s to n by backtracking through parent pointers
and terminate. This path is guaranteed to be
optimal under specific conditions.

c. Add n to the Closed List.
d. For each successor n′ of n:

i. If n′ is in the Closed List, skip it.
ii. Calculate the tentative cost 𝑔𝑡𝑒𝑚𝑝

(𝑛′) = 𝑔(𝑛) + 𝑐(𝑛, 𝑛′).
iii. If n′ is not in the Open List or 𝑔𝑡𝑒𝑚𝑝

(𝑛′) < 𝑔(𝑛′) (indicating a cheaper path
to n′ has been found):

a. Set n's parent to n.
b. Update 𝑔(𝑛′) = 𝑔𝑡𝑒𝑚𝑝(𝑛′).
c. Update 𝑓(𝑛′) = 𝑔(𝑛′) + ℎ(𝑛′).
d. If n′ is not in the Open List, add

it.
Otherwise, update its priority in the
Open List.

III. SOLVER IMPLEMENTATION

This chapter provides a detailed exposition of the solver's
software implementation, bridging the gap between the
theoretical concepts of FreeCell and search algorithms, and their
concrete realization in the Java programming language. The
discussion is segmented into three distinct, yet interconnected,
parts to offer a comprehensive overview of the system's design.

First, we will dissect the heuristic function, which represents
the core intelligence of the solver. This section will explain how
abstract human problem-solving strategies and intuition for
FreeCell are systematically mapped into a quantitative
evaluation function designed to guide the search process
effectively.

Second, we will describe the software architecture of the
FreeCell game environment itself. This includes an overview of
the object-oriented design, the data structures chosen to model
the dynamic game state, and the modular encapsulation of the
game's complex rules.

Finally, we will examine the concrete implementation of the
A* search algorithm. This analysis covers the primary data
structures used for state management, the process for generating
valid successor states, and the integration of custom
optimizations, such as the performAutocompleteMoves function,
which enhances search efficiency by handling deterministic
move sequences automatically.

A. Solving Intuition via Heuristics

The efficacy of the solver is primarily attributable to its
heuristic evaluation function, h(n), which provides the
necessary guidance for the search algorithm. The heuristic is
engineered to quantify the strategic value of any given game
state, with lower scores indicating more promising
configurations. Its design is based on a hierarchical, multi-stage
strategy that mirrors expert human play: prioritize the
establishment of board structure before focusing on end-game
objectives. This strategy can be summarized as: 1) create
ordered sequences in the tableau, 2) unblock critical cards, and
3) move cards to the home cells.

This strategic intuition is mathematically modeled in the
Heuristic.java file, where the heuristic value is a weighted sum
of five distinct components:

private static final int
REWARD_PER_CARD_IN_HOME = -25;

private static final int
REWARD_PER_SEQUENCE_CARD = -10;

private static final int
REWARD_PER_EMPTY_TABLEAU = -5;

private static final int
PENALTY_PER_USED_FREECELL = 2;

private static final int
PENALTY_PER_BLOCKED_CARD = 1;

1. Sequence Reward (-10)

This value directly encodes the primary strategy of
creating ordered stacks. The function
calculateSequenceScore identifies all cards within
valid, descending, color-alternating sequences and
applies a significant reward for each. This provides a
strong incentive for the algorithm to make moves that
improve the organization of the tableau.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 2. The sequence reward calculation implementation (Source:
Author’s code in the IDE)

2. Empty Tableau Reward (-5)

The creation of empty columns is a critical enabling
strategy, as they provide essential space for
reorganizing the tableau. This component rewards
states with empty tableau piles, encouraging the solver
to create this valuable resource.

3. Blocked Card Penalty (1)

This component addresses the secondary goal of
unblocking cards. It applies penalties for cards that are
obstructing other cards that are next in sequence to be
moved to a home cell (e.g., an Ace). This guides the
solver to clear these obstacles.

Fig. 3. The blocked card calculation implementation (Source:
Author’s code in the IDE)

4. Home Card Reward (-25)

This represents the final objective and provides the
largest single reward. By heavily weighing each card
successfully placed in a home cell, the heuristic ensures
the solver never loses sight of the ultimate goal.

5. Free Cell Penalty (2)

This models the strategic cost of using the four free
cells, which are a finite and critical resource. A small
penalty for each occupied free cell encourages the
solver to keep them open when possible.

 By synthesizing these rewards and penalties, the heuristic
provides a nuanced evaluation that effectively guides the search
algorithm toward strategically advantageous states.

B. FreeCell Software Architecture in Java

The solver is built upon a modular, object-oriented design
that ensures a clean separation of concerns between the game's
state representation, its rules, and the search algorithm.

 State Representation

public class GameState {

 private List<Stack<Card>>
tableauPiles;

 private List<Card> freeCells;
 private List<Stack<Card>> homeCells;

The GameState class serves as the central data
structure, providing a complete and self-contained
representation of the game board. The eight Tableau
piles and four Home Cell foundations are modeled as
a List<Stack<Card>>, which is an ideal structure for
the last-in, first-out operations of these piles. The four
FreeCells are modeled as a List<Card>. A crucial
method within this class is deepCopy(), which enables
the search algorithm to explore successor states
without mutating the state of the parent node from
which they were generated. The Card class itself is a
simple data object containing suit and rank attributes.

public class Card {

 private String suit;

 private String rank;

Fig. 4. The deepCopy() method intended for deep copy of game states
(Source: Author’s code in the IDE)

 Game Logic

All rules governing legal play are centralized within
the Rules class. This class is implemented as a
collection of public static utility methods (e.g.,
canMoveTableauToTableau, getMaxMovableCards).
Each method acts as a predicate function, accepting a
GameState and other relevant parameters to return a
boolean value indicating the validity of a potential
move. This design decouples the fundamental rules of

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

FreeCell from the search strategy, allowing either
component to be modified independently.

Fig. 5. The validator method canMoveTableauToFreeCell (Source:
Author’s code in the IDE)

Fig. 6. A snip of the canMoveTableauToTableau method (Source:
Author’s code in the IDE)

C. Search Algorithm Implementation

As per the theory that is stated in Chapter 2, the solver
employs the A* search algorithm to find a solution path from an
initial state to a goal state. The implementation is contained
within the AStar.java class and is tailored to the specifics of the
FreeCell game.

 Core Algorithm

The implementation adheres to the standard A*
procedure, which seeks to find the path with the lowest
f-score. The f-score, or evaluation function 𝑓(𝑛), is the
sum of two components: 𝑔(𝑛), the actual cost of the
path from the start node to the current node 𝑛, and
ℎ(𝑛), the heuristic's estimated cost from node 𝑛 to the
goal. This is defined in the Node.java class's getFScore
method. The priority queue (open list) in the solver is
configured to prioritize nodes with the lowest 𝑓(𝑛)
value, ensuring the algorithm always expands to the
most promising node on the frontier.

public class Node {

 private Node parent;

 private int depth;

 private int pathCost;

 private GameState state;

 private SolutionStep step;

 public int getFScore(Heuristic
heuristic) {

 return this.pathCost +
heuristic.calculate(this.state);

 }

 State Management

To manage the search, the algorithm maintains two
primary data structures: an openList (a priority queue)
for discovered but unexpanded nodes, and a closedList
(a HashSet) for nodes that have already been expanded.
This standard approach prevents the algorithm from
getting caught in cycles and avoids redundant
computations by ensuring no state is processed more
than once.

Fig. 7. Snip of the openList, closedList, openStates attributes on the
solve function (Source: Author’s code in the IDE)

Fig. 8. Snip of the openList queue mechanism (Source: Author’s code
in the IDE)

Fig. 9. Snip of the closedList addition mechanism (Source: Author’s
code in the IDE)

 Successor Generation with Autocomplete

The main loop of the algorithm extracts the node with
the lowest f-score from the openList. It then generates
all valid successor states by calling the
getHomeCellMoves and getOtherMoves methods. A
key feature of this implementation is the
performAutocompleteMoves function. This function is
invoked after each primary move is simulated. It serves
as a macro-operator, executing a cascade of all
subsequent "safe" and obvious moves to the home
cells. By bundling a primary strategic move with its
immediate deterministic consequences, this feature
allows the search to take larger, more meaningful steps,
which can help to reduce the effective depth of the
search space.

Fig. 10. Extracting the node with the lowest f-score (Source: Author’s
code in the IDE)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 11. Code snippet of the getHomeCellMoves method (Source:
Author’s code in the IDE)

Fig. 12. Code snippet of the performAutoCompleteMoves method
(Source: Author’s code in the IDE)

 Admissibility Analysis

For the A* algorithm to be optimal (that is, guaranteed
to find the shortest possible solution path), its heuristic
function ℎ(𝑛) must be admissible, meaning it never
overestimates the true cost (number of moves) required
to reach the goal. The custom heuristic implemented in
Heuristic.java is non-admissible by design. It does not
attempt to estimate the number of moves remaining.
Instead, it generates a strategic score based on a
weighted combination of rewards (for cards in home,
sequences, empty tableaus) and penalties (for blocked
cards, used free cells). Because this score can decrease
by a large amount (e.g., -25 for one card going home)
for a single move, it does not satisfy the admissibility
condition (ℎ(𝑛) ≤ 𝑡𝑟𝑢𝑒_𝑐𝑜𝑠𝑡(𝑛)). Consequently,
while the algorithm efficiently finds a solution by
following strong strategic guidance, it is not guaranteed
to find the solution with the absolute fewest number of
moves.

Fig 13. The output of visited nodes to show performance based on F-
score (Source: Authors’ output in the IDE terminal)

IV. TEST CASES & RESULTS

An empirical evaluation was conducted to validate the
performance and efficacy of the solver program described in the
preceding sections. A fundamental criterion for the solver's
validity is its ability to find solutions for a diverse range of
standard FreeCell puzzle configurations. To this end, a
comprehensive suite of benchmark tests was designed to assess
the implementation across a spectrum of complexities. These
tests include game configurations from distinct difficulty
categories, ranging from easy and medium to hard and very hard.

Furthermore, to test the algorithm's ability to correctly
handle unsolvable states, a known impossible game
configuration was included in the test suite. The subsequent
sections of this chapter will present and analyze the empirical
results and performance metrics obtained from these
evaluations.

A. Solver Testing

The test cases are based on real-life Microsoft FreeCell game
data, sourced from the benchmark collection at
freecellgamesolutions.com [1]. The following sections present
and analyze the performance metrics obtained from these
evaluations.

1) Easy Games
For this paper, "Easy" games are defined as

configurations that are solvable without utilizing any free
cells. The selected test suite includes hundreds of such
games. For this analysis, two specific cases were chosen to
test distinct aspects of the solver's performance.

a) Game 25904
This configuration is widely regarded as one of the
most computationally simple games. It serves as a
baseline test for the solver's ability to find a solution
quickly when the path is straightforward.

Fig. 14. Configuration for game 25904 (Source:
https://freecellgamesolutions.com/fcs/?game=25904&fc=0)

When this game was provided as input, the program
successfully found a solution. As a representative
example of the solver's detailed output format, the
complete solution path is presented in Image x. The
primary performance metrics for this test are
summarized below:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 15. Solution output (start & finish) from game 25904 (Source:
Authors’ output in the IDE terminal)

Fig. 16. Performance metrics for game 25904 (Source: Authors’
output in the IDE terminal)

b) Game 10913

Fig. 17. Configuration for game 10913 (Source:
https://freecellgamesolutions.com/fcs/?game=10913)

This game was selected for its distinction as having
one of the shortest known solution paths, requiring
only 18 moves. This test case evaluates the solver's
ability to find a highly efficient and non-obvious
solution. The solver successfully identified a path,
with the performance metrics summarized below:

Fig. 18. Performance metrics for game 10913 (Source: Authors’
output in the IDE terminal)

2) Medium Level Games
This category serves as a bridge between simple and

complex puzzles. It includes games that, while not
exceptionally difficult, require the use of free cells and more
sophisticated strategic planning.

a) Game 34898

Fig. 19. Configuration for game 34898 (Source:
https://freecellgamesolutions.com/fcs/?game=34898)

This game is classified by the benchmark source as the
most difficult configuration within the "easy" (zero-
free-cell) category, making it an excellent test of the
heuristic's ability to navigate a more complex search
space without needing free cells. The solver's
performance metrics are as follows:

Fig. 20. Performance metrics for game 34898 (Source: Authors’
output in the IDE terminal)

b) Game 23748

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 21. Configuration for game 23748 (Source:
https://freecellgamesolutions.com/fcs/?game=23748)

This game was selected as a representative case of an
average-difficulty puzzle that necessitates the use of
free cells for its solution. The results from this test are
presented below:

Fig. 22. Performance metrics for game 23478 (Source: Authors’
output in the IDE terminal)

3) Hard Games
Following the benchmark's definition, "Hard" games are

those that can only be solved by utilizing all four free cells.
These configurations typically involve much longer
solution paths and require the algorithm to navigate
significant local optima.

a) Game 1025

Fig. 23. Configuration for game 1025 (Source:
https://freecellgamesolutions.com/fcs/?game=1025)

This game was chosen as a typical example of a hard
puzzle, requiring complex maneuvering and full use of
available resources. The solver's results are below:

Fig. 24. Performance metrics for game 1025 (Source: Authors’ output
in the IDE terminal)

b) Game 5087

Fig. 25. Configuration for game 5087 (Source:
https://freecellgamesolutions.com/fcs/?game=5087)

This configuration is considered one of the most
challenging FreeCell games, with a known minimal
solution path of at least 50 moves. It serves as a stress
test for the solver's heuristic guidance and search depth
capabilities. The performance summary is as follows:

Fig. 26. Performance metrics for game 5087 (Source: Authors’ output
in the IDE terminal)

4) Impossible Game

Fig. 27. Configuration for game 11982 (Source:
https://freecellgamesolutions.com/fcs/?game=11982)

To validate the solver's behavior on unsolvable problems, a
configuration proven to be impossible was used as input [1,
6]. A robust solver should not loop indefinitely but should
terminate correctly. The summary of the test result is
displayed below:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 28. Preview of node exploration during the impossible game test
(Source: Authors’ output in the IDE terminal)

Fig. 29. Performance metrics for game 11982 (Source: Authors’ output in
the IDE terminal)

The complete test results can be found in the /result folder on
the GitHub repository cited in the chapters below.

B. Result and Performance Analysis

The primary performance metrics recorded for each test
were: the total runtime to find a solution, the number of search
nodes expanded (a measure of computational effort), and the
length of the discovered solution path.

1) Performance Summary
The average performance of the solver across the primary
difficulty categories is summarized in Table 1 below. The
data demonstrates a clear correlation between the prescribed
difficulty of a game and the computational resources
required to find a solution.

Difficulty
Level

Average
Runtime
(ms)

Average
Nodes
Expanded

Average
Path Length

Easy ~133 ~74 ~29.5
Medium ~1,659 ~4,133 ~59
Hard ~2,343 ~9,465 ~61

Table 1. Average results for the tests grouped by board difficulty, using (n
= 5) sample size for each difficulty group.

2) Analysis of Results
The aggregated data reveals distinct performance
characteristics for each difficulty level, highlighting how
the complexity of the game state impacts the search process.

a) Easy Games
This category, defined by puzzles solvable with zero free
cells, presented the least computational challenge. As
indicated by the low average runtime and node count, the
solver was able to identify a solution path relatively
directly. In these configurations, the heuristic function
effectively guides the search along a near-optimal path

with minimal deviation into unproductive branches of the
search tree. The search is characterized by a consistent
and rapid improvement in the heuristic score from one
state to the next.

b) Medium Games
This category represents a significant increase in
complexity. The requirement of using free cells
introduces more intricate dependencies between moves
and creates a more challenging search space. The data
reflects this, showing a substantial rise in both the
number of nodes expanded and the total solution time.
For these games, the solver more frequently encounters
local optima, where it must explore numerous states with
similar heuristic values before discovering a
"breakthrough" move that unlocks further progress.

c) Hard Games
The "Hard" category, requiring the use of all four free
cells, proved to be the most computationally intensive.
The performance metrics show an exponential increase
in search effort compared to the medium level. These
puzzles are characterized by long, non-obvious move
sequences and numerous strategic dead-ends. The
heuristic, while still effective, must guide the search
through vast plateaus in the state space where a clear path
forward is not immediately apparent. The solver's ability
to solve these games, albeit with longer runtimes,
demonstrates the robustness of the implementation, while
the high node count underscores the sheer combinatorial
complexity of these advanced puzzles.

d) Validation on the Impossible Game
Finally, to test the algorithm's completeness and
termination behaviour, a known impossible game
configuration was used as input. The solver correctly
concluded that no solution was available by reaching its
predefined search limits (maxNodes and
max_search_depth in AStar.java). This is the desired
outcome, as it confirms the solver will not loop
indefinitely on an unsolvable problem and correctly
terminates its search.

V. CONCLUSION

This research has successfully demonstrated the application
of an informed search algorithm to the computationally
challenging, high-complexity state-space of the game FreeCell.
The developed solver, based on the A* search framework,
proves capable of finding solutions for a wide range of game
configurations, validating the overall architectural design. The
primary contribution of this work is the development and
validation of a custom, multi-component heuristic function that
effectively guides the search process by quantitatively modeling
expert human strategic priorities.

The central role of the heuristic was paramount to the
project's success. It was determined that naive or simplistic

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

evaluation functions were insufficient for navigating the
complexities of the game. The final heuristic represents a form
of knowledge engineering, codifying the domain-specific
strategy of prioritizing intermediate structural goals—namely,
the formation of ordered tableau sequences—before pursuing
terminal objectives. This strategic encoding allows the solver to
identify and favor board states that are not just numerically
closer to the goal but are positionally and structurally more
advantageous, a critical distinction that earlier heuristic
iterations failed to capture.

The performance of the solver must be understood within its
theoretical context. While uninformed search methods such as
Breadth-First Search are complete, they are computationally
infeasible for a problem with a combinatorial state space as large
as FreeCell's. Conversely, a standard A* search with a simple,
admissible heuristic (e.g., counting cards not in their home
positions) would, in theory, guarantee an optimal solution.
However, its practical performance would be poor due to the
heuristic's weak pruning power, leading to an exhaustive and
inefficient exploration of the search space.

The implemented algorithm occupies a pragmatic middle
ground, deliberately trading guaranteed optimality for
computational efficiency. By employing a powerful, non-
admissible heuristic, the solver performs an aggressive pruning
of the search tree, allowing it to find solutions to otherwise
intractable problems within practical time and memory
constraints. The non-admissibility of the heuristic means the
discovered path is not guaranteed to be the shortest, but its
guidance ensures that the search remains focused on
strategically viable paths. This work, therefore, confirms that for
many complex problem domains, the most effective approach is
not the one with the strongest theoretical guarantees of
optimality, but the one guided by a well-engineered, domain-
specific heuristic that makes the problem tractable in practice.

VI. ACKNOWLEDGMENT

The author would like to express the deepest gratitude to the
Lord Almighty for His guidance and blessings during the
development of this paper until completion. The author would
also like to extend heartfelt gratitude to all contributors and
supporters during the development of this paper, including:

1. Dr. Rinaldi Munir, lecturer of the IF2211 Algorithm
Strategies course, for his invaluable guidance and the
knowledge imparted during the lectures,

2. The authors’ family and friends, for their unwavering
support during the stressful times of developing this
paper.

Their contributions and support have been instrumental in
the successful completion of this work.

VII. APPENDIX

The complete source code, test results, and main program used
for the completion of this paper can be accessed in the GitHub
page here. Outside of that, the video describing this paper can
be accessed here.

REFERENCES
[1] T. E. Slattery, "Freecell Game Solutions," freecellgamesolutions.com.

[Online]. Available: https://freecellgamesolutions.com/. [Accessed: June
21, 2025].

[2] S. Fish, "FC-Solve - An automated solver for Freecell and related card
games," fc-solve.shlomifish.org. [Online]. Available: https://fc-
solve.shlomifish.org/js-fc-solve/text/. [Accessed: June 21, 2025].

[3] GeeksforGeeks, "A* Search Algorithm," geeksforgeeks.org, 2023.
[Online]. Available: https://www.geeksforgeeks.org/a-search-algorithm/.
[Accessed: June 21, 2025].

[4] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, July 1968.

[5] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 4th
ed. Hoboken, NJ: Pearson, 2021, pp. 91-101.

[6] P. Alfille, "Freecell Faq," Solitaire Laboratory, 1994. [Online]. Available:
http://www.solitairelaboratory.com/freecellfaq.html. [Accessed: June 21,
2025].

[7] L. K. Yan, "An A*-Based Freecell Solver," Stanford University CS221
Project Report, 2012. [Online]. Available:
https://stanford.edu/~lkales/reports/cs221_report.pdf. [Accessed: June
21, 2025].

STATEMENT OF ORIGINALITY

I hereby declare that this paper I have written is my own work,
not an adaptation or translation of someone else's paper, and
not plagiarism.

Bandung, 21st June 2025

Haegen Quinston

13523109

